Follow on Google News Industry News News By Place Country(s) Industry News
Follow on Google News | Centennial Researchers Develop Simpler Method For Assembling NanowiresResearchers on NC State University's Centennial Campus have developed a cheap and easy method for assembling nanowires, controlling their alignment and density.
By: Gene Pinder, Director of Marketing “Alignment is a critical first step for developing devices that use nanowires,” says Dr. Yong Zhu, an assistant professor of mechanical and aerospace engineering at NC State and co-author of a paper describing the research. “Hopefully our simple and cost-effective method will facilitate research in this field.” Aligning nanowires is challenging because, when they are created, the user is faced with a profusion of randomly oriented nanoscale wires that are, by definition, incredibly small. For example, the nanowires are between 10 and 100 nanometers in diameter, whereas a white blood cell is approximately 10,000 nanometers in diameter. Before any practical applications can be pursued, the user must assemble the nanowires in an orderly way. Specifically, users need to align the nanowires in a common direction and define their density – meaning the number of nanowires in a given area. Controlling both alignment and density is commonly called “assembling” In the new method, Zhu’s team deposited the nanowires on a stretched rubber substrate, and then released the tension on the substrate. When the nanowires settled, they aligned at a right angle to where the tension was coming from. Picture a rubber band being stretched to the east and west. If nanowires were placed on the rubber band, and the band was allowed to snap back to its original shape, the nanowires would be oriented to the north and south. The more the rubber substrate is stretched, the more aligned the nanowires will be, and the greater the nanowire density will be. Previous research has presented a number of other methods for assembling nanowires. But the new method offers a number of distinct advantages. “Our method is cost-effective,” The use of a rubber substrate in this method facilitates broad research and manufacturing sectors. For example, a key element of research into stretchable nanoelectronics involves aligning nanowires on a stretchable rubber substrate. Similarly, rubber is also the material used as “stamps” in transfer printing – a critical fabrication method used in manufacturing nanodevices on diverse substrates ranging from silicon to glass to plastic. Zhu notes that the initial step of the method, when the nanowires are first deposited on stretched rubber, sometimes yields an inconsistent degree of nanowire alignment. The team is currently working to understand the fundamental interface mechanics -including adhesion and static friction -between nanowires and rubber substrates, which is expected to lead to a better control of the assembly process and hence a higher yield of the nanowire assembly. The paper, “Strain-Release Assembly of Nanowires on Stretchable Substrates,” NC State’s Department of Mechanical and Aerospace Engineering is part of the university’s College of Engineering, which is located on Centennial Campus. Written by Matt Shipman, NCSU News Services About Centennial Campus and NC State University Centennial Campus (http://www.centennial.ncsu.edu) is an internationally recognized 1,314-acre research park and technology campus owned and operated by North Carolina University. Home to more than 60 corporate, government and non-profit partners, such as Red Hat, ABB, and the USDA, collaborative research projects vary from nanofibers and secure open systems technology to serious gaming and biomedical engineering. Four university college programs also have a significant presence on campus – College of Engineering, College of Veterinary Medicine, College of Textiles and the College of Education. NC State is one of the top research universities in the country, with expenditures in research approaching more than $325 million annually. The university ranks third among all public universities (without medical schools) in industry-sponsored research expenditures. (http://www.ncsu.edu) End
|
|