Follow on Google News News By Tag Industry News News By Place Country(s) Industry News
Follow on Google News | ![]() Superelasticity and Shape Memory of NitinolNitinol (Nitinol) alloys have many material and device characteristics, for example, kinking resistance, stress constancy, dynamic interference, deflection stiffness, magnetic resonance imaging (MR1) compatibility, radiopacity and biocompatibility.
Shape memory Shape memory happens when mother phase of a certain shape is cooled from above the Af temperature to below the Mf temperature and completely forms the martensite, deforming the martensite below Mf temperature. After being heated to below Af temperature, with reverse phase transformation, the material will automatically restore its shape in mother phase. In fact, the shape memory effect is a thermally induced phase transition process of nitinol. It refers to ability of nitinol to deform at a certain temperature and then restore the original, non-deformed shape when the temperature is higher than its "transition temperature" Superelasticity The so-called superelasticity refers to the phenomenon in which the sample produces a strain that is far greater than the elastic limit strain under the effect of external forces and the strain can automatically restore during unloading. In mother phase, due to the effect of external stress, the strain triggers martensitic phase transition so that the alloy exhibits mechanical behaviors that are different from those of ordinary materials. Its elastic limit is much larger than that of ordinary materials. And it no longer follows Hooke's Law. Compared with shape memory effect, superelasticity does not involve heat. Nitinol (https://www.edge- End
|
|