New Nanoparticle Can Kill Cancer Cells Efficiently And Selectively

By: Biochempeg Scientific Inc.
 
CHANGSHA, China - Dec. 24, 2020 - PRLog -- Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have developed a novel type of nanoparticle that efficiently and selectively kills cancer cells, thus opening up new therapeutic options for the treatment of tumors.

Many chemotherapeutic agents used to treat cancers are associated with side-effects of varying severity, because they are toxic to normal cells as well as malignant tumors. This has motivated the search for effective alternatives to the synthetic pharmaceuticals with which most cancers are currently treated.

The problem consists in finding ways to overcome the mechanisms that control the uptake of these compounds into cells, and ensuring that the compounds act selectively on the cells one wishes to eliminate.

Researchers in the Department of Chemistry at LMU, led by Dr. Constantin von Schirnding, Dr. Hanna Engelke and Prof. Thomas Bein, now report the development of a class of novel amorphous nanoparticles made up of calcium and citrate, which are capable of breaching the barriers to uptake, and killing tumor cells in a targeted fashion.

Both calcium phosphate and citrate are involved in the regulation of many cellular signaling pathways. Hence, the levels of these substances present in the cytoplasm are tightly controlled, in order to avoid disruption of these pathways.

Experiments on cultured cells revealed that the particles are selectively lethal – killing cancer cells, but leaving healthy cells (which also take up particles) essentially unscathed.

During cellular uptake, the nanoparticles acquire a second membrane coat. The authors of the study postulate that an unknown mechanism – which is specific to cancer cells – causes a rupture of this outer membrane, allowing the contents of the vesicles to leak into the cytoplasm. In healthy cells, on the other hand, this outermost layer retains its integrity, and the vesicles are subsequently excreted intact into the extracellular medium.

Many pleural tumors are the metastatic products of lung tumors, and they develop in the pleural cavity between the lung and the ribcage. Because this region is not supplied with blood, it is inaccessible to chemotherapeutic agents.

β€žIn contrast, our nanoparticles can be directly introduced into the pleural cavity," says Bein. Furthermore, over the course of a 2-month treatment, no signs of serious side-effects were detected. Overall, these results suggest that the new nanoparticles have great potential for the further development of novel treatments for other types of cancer.

Biochempeg (https://www.biochempeg.com/) is a leading supplier of PEG derivatives which are applied in many fields, including medical research, drug-release, nanotechnology, new materials research, cell culture, and other applications. Many studies have shown that PEG modification can extend the half-life of nanomedicine by preventing protein adsorption and phagocytes ingestion.

Contact
Biochempeg Scientific Inc. Sonia Li
***@biochempeg.com
End
Source:Biochempeg Scientific Inc.
Email:***@biochempeg.com
Posted By:***@biochempeg.com Email Verified
Tags:Nanoparticle
Industry:Business
Location:Changsha - Hunan - China
Subject:Events
Account Email Address Verified     Account Phone Number Verified     Disclaimer     Report Abuse
Biopharma PEG Scientific Inc. News
Trending
Most Viewed
Daily News



Like PRLog?
9K2K1K
Click to Share