what's under the hood in today's smartphones? Review Smartphone Specs Demystified

Ever wonder what "capacitive touchscreen," "MicroSD" and "HSPA+" mean? We provide real definitions for the specs most commonly used to describe what's under the hood in today's smartphones.
June 10, 2011 - PRLog -- Retailers use various marketing and technical terms to describe the smartphones they sell. Some of those terms represent meaningful phone characteristics, while others are mostly hype. To help smartphone shoppers understand what they're looking at, we offer definitions of the most commonly used specifications, and explain why they are important.

These definitions can help you choose a phone whose specs meet your needs; they can also come in handy when you're trying to separate the truth from the hype in the sales pitches you encounter in commercials or in stores.


The processor inside a smartphone acts as the device's brain, handling most or all of the device’s central processing functions on a single integrated circuit, or chip.

When you're shopping for a smartphone, one key question to ask is whether specific models contain a 1GHz processor--a feature you’ll find on most high-end smartphones.

The major makers of 1GHz processors are Samsung (Hummingbird, Apple A4), Qualcomm (Snapdragon) and Texas Instruments (OMAP). 1GHz processors complete system tasks and hardware multimedia acceleration at high clock speeds and with low power consumption. The processors also work with the phone’s software to decode high definition video (at 720p or 1080p depending on the chip) and to ensure faster, smoother Web browsing. http://www.batterylaptoppower.com/hp/484170-001.htm

A smartphone need not contain a 1GHz chip to perform well, however. Earlier this year, when the not -yet-released T-Mobile G2 was rumored to have an 800MHz Qualcomm Scorpion processor, phone fans were disappointed, reasoning that the chip would compromise the performance of the phone. But when the G2 arrived and went through benchmark tests, its 800MHz processor put it on a par with Snapdragon-powered phones.

When shopping for a smartphone, take time to assess the tasks you want your smartphone to perform. If you expect to consume a lot of multimedia content, browse the Web frequently, or run complex apps for extended periods, you might be happier with a 1GHz chip inside your phone.

In any event, it makes sense to find out which company made the chip in the phone, and to locate any available information about how the chip handles graphics and Web browsing.


If you intend to send and receive text messages, surf the Web, or watch videos on your phone, you’ll want to ensure that the display is large enough and packs a high enough pixel resolution to handle the job. A display size of 2.7 inches (about the size of a BlackBerry Curve’s display) or larger will suffice for managing e-mail and basic Web browsing, but if you plan to play games or watch video, you’ll want a 3.5-inch or larger screen.

Most smartphones and regular cell phones today use LCD (liquid crystal display) technology, which offers reasonably sharp graphics and is relatively inexpensive to produce.

There are two main types of LCD displays on phones. TFT (thin-film transistor) displays use thin-film transistor technology to improve image quality. Unfortunately, viewing angles and visibility in direct light are poor, and TFT displays are relatively power-hungry. As a result, they tend to appear on lower-end, regular cell phones (sometimes called "feature phones"). http://www.batterylaptoppower.com/acer/aspire-5520.htm

IPS-LCD (in-plane-switching LCD) displays, found on the iPhone 4 and the Motorola Droid X (marketed as a “Retina Display”), offers improved viewing angles and lower battery consumption than TFT LCD displays. Relatively powerful phones often use them.

AMOLED (Active-matrix organic light-emitting diode) display technology is gaining popularity in high-end phones like the Google Nexus One and the HTC Droid Incredible. The displays are much easier to view in bright, natural sunlight than their LCD counterparts; however, some users have noted that AMOLED displays are prone to rendering oversaturated colors. Supposedly, AMOLED displays require less power and thus conserve a phone's battery life; but in real-life battery tests, they consume just as much energy as LCD displays.

Samsung’s Galaxy S was the first smartphone to showcase the company’s own Super AMOLED technology. Super AMOLED puts touch sensors on the display itself, as opposed to creating a separate layer, making it the thinnest display technology on the market. It is also much more responsive than other AMOLED displays.


Smartphone touchscreens allow the user to interact directly with the phone’s interface and operating system. These days, two main types of touchscreens are used in smartphones: resistive and capacitive. Resistive touchscreens contain two layers of conductive material with a small gap between them. When your finger depresses a point on the screen, the two layers meet and form a circuit at that location. The information from that circuit then goes to the phone’s processor.

Capacitive touchscreens often appear in higher-end smartphones like the HTC EVO 4G and the Motorola Droid. These screens usually consist of a layer of glass coated with a transparent conductor like indium tin oxide. The human body also conducts electricity, so when your finger touches the coating on the glass, it creates an interruption in the screen’s electrostatic field. The phone's processor then detects the location of that interruption.


Many of today’s cell phones use lithium-ion batteries; lithium is the chemical inside the battery cell that migrates to the cathode of the battery, releasing an electrical charge. Lithium-ion batteries are rechargeable and last two to three times longer than alkaline batteries.

Larger phones tend to have 1500mAH lithium-ion batteries, while most smaller phones have around 1400mAH. (The current capacity of a cell phone battery is measured in milliampere-hours, or mAH.) Most of your battery's power goes to powering your screen; that’s why phones with larger screens use 1500mAH batteries.

The battery http://www.batterylaptoppower.com/hp/530.htm  that accompanies a phone is usually satisfactory for that model, but if you spend long periods away from electrical outlets, it’s a good idea to buy a lithium-ion battery with a larger capacity than the one that comes with your phone. Note that talk and standby times vary depending on the number of apps the phone is running, the screen brightness, whether you have Wi-Fi/GPS or 4G turned on, and other factors.


Is there much practical difference in image quality between a picture shot with an 8-megapixel camera and one taken with a 5-megapixel camera? The megapixel count reflects the size of the camera’s sensor--a small device inside the phone that converts an optical image into an electronic signal. The higher the pixel count, the higher the resolution of your photos. But you’ll probably view most of your photos on your phone’s display or on a PC, where the two resolutions are typically indistinguishable. If you plan on printing your photos, however, a higher megapixel count will make a difference.

As is true with point-and-shoot and digital SLR cameras, more megapixels doesn't automatically mean better image quality. Other factors that affect image quality include the quality of the camera lens (the Nokia N-Series phones, for instance, ship with lenses made by Carl Zeiss, a company that also makes lenses for high-end digital SLRs), the accuracy of the camera’s autofocus features, and the camera's shutter speed (this is especially important if you’re shooting a fast-moving subject). Shooting modes for various light environments (low-light indoors, evening, nighttime, etc.) can also help improve image quality.

# # #

www.batterylaptoppower.com - We guarantee our laptop batteries for full 1 year warranty and 30-day money back on every laptop battery.

Like PRLog?
Click to Share